Общая характеристика школьных математических олимпиад. Примеры задач математических олимпиад для 7-9 классов

Материалы о педагогике » Внеклассная работа по математике в 7-9 классах » Общая характеристика школьных математических олимпиад. Примеры задач математических олимпиад для 7-9 классов

Страница 2

3. (ABDE)(BCEF)=(ABC)(DEF)(BE).

Учитывая, что ABDE=BCEF=4, ABC=DEF=1, получаем равенство: 16=BE. Аналогично получим, что EH=16. Перемножаем полученные равенства: (BE)(EH)=(BEH)E. 1616=E.

Ответ: E=256.

4. Обозначим 2001=. Тогда данное нам числовое выражение запишется в виде:

Тогда .

5. Пусть Nk, Ns и Nz - количество красных, синих и зелёных амёб, соответственно. В начальный момент времени , - нечётны, - чётно. Нетрудно проверить, что при любом слиянии эти чётности сохраняются. Поэтому в конце концов , . Ответ: последняя амёба - синяя.

9 КЛАСС

1. Пусть x$ - стоимость первого автомобиля, y$ - стоимость второго автомобиля. При продаже Вася получил 9000$ чистой прибыли. Составляем систему уравнений:

.

Решив систему, найдём . Тогда сумма штрафа составляет 12000$. 12000 - 9000=3000.

Таким образом, Вася потерял 3000$.

A1

A2

A3

A4

A5

A6

A7

A8

B1

B2

B3

B4

B5

B6

B7

B8

C1

C2

C3

C4

C5

C6

C7

C8

2. (A1A2A3B1B2B3C1C2C3) (A3A4A5B3B4B5C3C4C5) (A6A7A8B6B7B8C6C7C8)=(A1A2A3A4A5A6A7A8) (B1B2B3B4B5B6B7B8) (C1C2C3C4C5C6C7C8)(A3B3C3).

Т.е. A3B3C3=8. Аналогично - C1C2C3=8.

Произведение чисел в квадрате 66, стоящем на пересечении 3-8 столбцов и 3-8 строк равно 16, так как этот квадрат разбивается на 4 квадрата 33. В оставшемся уголке (на рисунке он заштрихован) произведение чисел равно 1/16, так как во всей таблице произведение равно 1. Но произведение чисел в закрашенном уголке можно также получить, перемножив числа первой и второй строк, первого и второго столбца и разделив всё это на A1A2B1B2. Отсюда A1A2B1B2=16.

Страницы: 1 2 3

Материалы по педагогике:

Понятие о личности
Одной из сложных и ключевых проблем педагогической теории и практики является проблема личности и ее развития в специально организованных условиях. Она имеет различные аспекты, поэтому рассматривается разными науками: возрастной физиологией и анатомией, социологией, детской и педагогической психоло ...

Геоэкологическое образование в педагогическом процессе
Знания в области геоэкологии чрезвычайно разнообразны и многослойны: от конкретных сведений, призванных удовлетворять запросы повседневной практики природопользования, до философско-мировоззренческих обобщений, раскрывающих закономерности взаимодействия общества и природы. Вот почему задача выработ ...

Использование личностно ориентированного подхода в процессе обучения детей
В последнее десятилетие в психолого-педагогической науке получили распространение термины "личностно ориентированная педагогика", "личностно ориентированное обучение". Наиболее употребительное толкование заключается в том, что личностно ориентированный подход в педагогике – это ...

Навигация