Следует различать 2 смысла, в котором может употребляться выражение «алгоритмизация обучения».
Под алгоритмизацией обучения понимают алгоритмизацию деятельности учителя; составление и использование алгоритмов обучения.
Алгоритмизация деятельности учащихся, то есть не что иное, как обучение алгоритмам.
Открытие алгоритмов решения математических задач привело к коренному изменению в практике обучения математике: алгоритмам стали учить, и это во много раз облегчило и ускорило овладение этим предметом. В то же время учебный процесс ни в коем случае не должен и не может быть сведён только к обучению алгоритмам.
В обучении учащихся алгоритмам можно идти разными путями:
Давать учащимся алгоритм в готовом виде. Такой путь не является лучшим, но позволяет экономить время.
Гораздо более ценно, когда ученик открывает соответствующие алгоритмы сам или с помощью учителя.
Подбор учителем таких упражнений и задач в ходе решения, которых у учащихся будут формироваться нужные системы операций.
Формирование алгоритмического процесса идёт более успешно, когда эти различные пути соединяются.
При формировании алгоритма выделяют три основных этапа [26]:
I. Введение алгоритма. Этот этап подразумевает следующее:
Актуализация знаний, необходимых для введения и обоснования алгоритма.
Открытие алгоритма учащимися под руководством учителя.
Формулировка алгоритма.
II.Усвоение
Отработка отдельных операций, входящих в алгоритм и усвоение их последовательности.
III.Применение алгоритма.
Отработка алгоритма в знакомой и незнакомой ситуациях.
Выделенные этапы будут проиллюстрированы во второй главе работы.
Таким образом, применение алгоритмического метода при обучении математике устраняет главный недостаток учебников: процесс мыслительной деятельности расчленяется на определённое число достаточно простых элементарных операций, усвоения и понимания которых для учащихся будет менее трудоёмко.
Часть 2
1 Особенности изучения темы «Неравенства» в школьном курсе математики
Материал, связанный с неравенствами, составляет значительную часть школьного курса математики. Неравенства используются в различных разделах математики, при решении важных прикладных задач.
Неравенства сами по себе представляют интерес для изучения, так как именно с их помощью на символьном языке записываются важные задачи познания реальной действительности. Как в самой математике, так и в её приложениях с неравенствами приходится сталкиваться не менее часто, чем с уравнениями. Тема “Неравенства” связана со всеми темами курса алгебры. Например, неравенства используются при изучении свойств функции (нахождение промежутков знакопостоянства функции, определение монотонности и др.)
До прихода в школу дети приобретают опыт в обращении с понятиями «больше», «меньше», «не равны». Поэтому пропедевтическое изучение неравенств должно осуществляться совместно с изучением уравнений.
С соотношениями «больше», «меньше» между числами и знаками этих отношений дети знакомятся уже в 1 классе при изучении чисел первого десятка. В начальной школе дети должны научиться сравнивать уже простейшие числовые выражения, например, такие как: а+3 и а+1.
В начальной школе начинается и решение простейших неравенств, хотя термины «решение неравенства» и «решить неравенство» ещё не вводится. Приведём пример задания, предлагаемого в начальной школе.
Записать несколько значений букв, при которых верно неравенство х<9.
В 5 классе изучается сравнение натуральных, десятичных дробей.
Например, сравните многозначные натуральные числа 3421 и1803
Результат сравнения записывается в виде неравенства с помощью
Знаков « > » и « < » .
В 6 классе для установления отношений «больше», «меньше» на множестве рациональных чисел вводится понятие модуля числа. В связи с этим рассматриваются неравенства вида |х|≤а, |х-b|<b, |х-a|≤b. Их решения осуществляются с помощью числовой оси.
Тема “Неравенства” систематически изучается в 7-8 классах. В неё включены следующие разделы: «Числовые неравенства и их свойства», «Почленное сложение и умножение числовых неравенств», «Линейное неравенство с одной переменной», «Система линейных неравенств с одной переменной».
В 8 классе начинается изучение различных способов доказательства неравенств. С целью повышения доступности материала рассматриваются главным образом такие доказательства, которые ограничиваются методом сравнения с нулём разности левой и правой частей неравенств. В связи с решением линейных неравенств с одной переменной даётся понятие о числовых промежутках, появляются и вводятся соответствующие обозначения. При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание надо уделять отработке умения решать простейшие неравенства вида ах<b.
Материалы по педагогике:
Понятие дислалии
Дислалия (от греч. dis - приставка, означающая частичное расстройство, и lalio - говорю) - нарушение звукопроизношения при нормальном слухе и сохранной иннервации речевого аппарата. Среди нарушений произносительной стороны речи наиболее распространенными являются избирательные нарушения в ее звуков ...
Категория «педагогическое проектирование»
Педагогическое проектирование- это высший уровень педагогической деятельности, проявляющийся в творчестве учителя, в постоянном совершенствовании искусства обучения, воспитания и развития человека. Педагогическое творчество рассматривается как состояние педагогической деятельности, при котором прои ...
Глобальная компьютерная сеть Интернет и ее использование в образовательных
целях
Создание компьютерных сетей предоставило человечеству абсолютно новый способ общения. Новейшие достижения в технологии передачи данных с учетом последних изобретений в области мультимедиа открывают неограниченные возможности по обработке и передаче массива данных практически в любую точку земного ш ...