Этапы изучения алгоритма в школе

Страница 1

Следует различать 2 смысла, в котором может употребляться выражение «алгоритмизация обучения».

Под алгоритмизацией обучения понимают алгоритмизацию деятельности учителя; составление и использование алгоритмов обучения.

Алгоритмизация деятельности учащихся, то есть не что иное, как обучение алгоритмам.

Открытие алгоритмов решения математических задач привело к коренному изменению в практике обучения математике: алгоритмам стали учить, и это во много раз облегчило и ускорило овладение этим предметом. В то же время учебный процесс ни в коем случае не должен и не может быть сведён только к обучению алгоритмам.

В обучении учащихся алгоритмам можно идти разными путями:

Давать учащимся алгоритм в готовом виде. Такой путь не является лучшим, но позволяет экономить время.

Гораздо более ценно, когда ученик открывает соответствующие алгоритмы сам или с помощью учителя.

Подбор учителем таких упражнений и задач в ходе решения, которых у учащихся будут формироваться нужные системы операций.

Формирование алгоритмического процесса идёт более успешно, когда эти различные пути соединяются.

При формировании алгоритма выделяют три основных этапа [26]:

I. Введение алгоритма. Этот этап подразумевает следующее:

Актуализация знаний, необходимых для введения и обоснования алгоритма.

Открытие алгоритма учащимися под руководством учителя.

Формулировка алгоритма.

II.Усвоение

Отработка отдельных операций, входящих в алгоритм и усвоение их последовательности.

III.Применение алгоритма.

Отработка алгоритма в знакомой и незнакомой ситуациях.

Выделенные этапы будут проиллюстрированы во второй главе работы.

Таким образом, применение алгоритмического метода при обучении математике устраняет главный недостаток учебников: процесс мыслительной деятельности расчленяется на определённое число достаточно простых элементарных операций, усвоения и понимания которых для учащихся будет менее трудоёмко.

Часть 2

1 Особенности изучения темы «Неравенства» в школьном курсе математики

Материал, связанный с неравенствами, составляет значительную часть школьного курса математики. Неравенства используются в различных разделах математики, при решении важных прикладных задач.

Неравенства сами по себе представляют интерес для изучения, так как именно с их помощью на символьном языке записываются важные задачи познания реальной действительности. Как в самой математике, так и в её приложениях с неравенствами приходится сталкиваться не менее часто, чем с уравнениями. Тема “Неравенства” связана со всеми темами курса алгебры. Например, неравенства используются при изучении свойств функции (нахождение промежутков знакопостоянства функции, определение монотонности и др.)

До прихода в школу дети приобретают опыт в обращении с понятиями «больше», «меньше», «не равны». Поэтому пропедевтическое изучение неравенств должно осуществляться совместно с изучением уравнений.

С соотношениями «больше», «меньше» между числами и знаками этих отношений дети знакомятся уже в 1 классе при изучении чисел первого десятка. В начальной школе дети должны научиться сравнивать уже простейшие числовые выражения, например, такие как: а+3 и а+1.

В начальной школе начинается и решение простейших неравенств, хотя термины «решение неравенства» и «решить неравенство» ещё не вводится. Приведём пример задания, предлагаемого в начальной школе.

Записать несколько значений букв, при которых верно неравенство х<9.

В 5 классе изучается сравнение натуральных, десятичных дробей.

Например, сравните многозначные натуральные числа 3421 и1803

Результат сравнения записывается в виде неравенства с помощью

Знаков « > » и « < » .

В 6 классе для установления отношений «больше», «меньше» на множестве рациональных чисел вводится понятие модуля числа. В связи с этим рассматриваются неравенства вида |х|≤а, |х-b|<b, |х-a|≤b. Их решения осуществляются с помощью числовой оси.

Тема “Неравенства” систематически изучается в 7-8 классах. В неё включены следующие разделы: «Числовые неравенства и их свойства», «Почленное сложение и умножение числовых неравенств», «Линейное неравенство с одной переменной», «Система линейных неравенств с одной переменной».

В 8 классе начинается изучение различных способов доказательства неравенств. С целью повышения доступности материала рассматриваются главным образом такие доказательства, которые ограничиваются методом сравнения с нулём разности левой и правой частей неравенств. В связи с решением линейных неравенств с одной переменной даётся понятие о числовых промежутках, появляются и вводятся соответствующие обозначения. При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание надо уделять отработке умения решать простейшие неравенства вида ах<b.

Страницы: 1 2 3 4 5 6

Материалы по педагогике:

Технология развития мотивационных основ к урокам физической культуры
Одной из наиболее сложных структур личности является мотивирование. Поскольку мотив всегда рассматривался как основа деятельности, его формированию посвящали свои исследования практически все ученые педагоги и психологи. В исследованиях наших аспирантов (Бахтина О.В., Волощенко И.И., Г.Г. Лаптиева, ...

Внутренние органы рыб
Полость тела. В туловищном отделе рыбы, под позвоночником, находится большая полость тела, в которой располагаются внутренние органы. Пищеварительная система. Окунь — хищник. Он питается различными водными животными, в том числе рыбами других видов. Свою добычу окунь захватывает и удерживает острым ...

Основные направления коррекционной работы по эмоциональному воспитанию дошкольников с общим недоразвитием речи
Эмоциональные процессы являются той сферой психологического бытия ребенка, которая заряжает и регулирует все остальные его функции, такие как восприятие, внимание, память, мышление, воображение и др. Эмоциональные образы и эмоциональный контроль являются целью и продуктом воспитания, особенно у хол ...

Навигация