Этапы изучения алгоритма в школе

Страница 2

Формирование умений решать неравенства вида ах2+вх+с>0, где а≠0, осуществляется в 9 классе с опорой на сведения о графике квадратичной функции. Здесь учащиеся знакомятся с методом интервалов. Решают этим методом дробно – рациональные неравенства.

Следует особо остановиться на вопросе о равносильности неравенств, так как некоторые свойства числовых неравенств нельзя бездумно переносить на неравенства, содержащие переменную. Известно, что при добавлении к обеим частям числового неравенства любого числа, получаем новое неравенство, равносильное исходному. Но при добавлении к обеим частям неравенства какого – нибудь выражения может получиться неравенство неравносильное данному.

При переходе к функциональным неравенствам учащиеся сталкиваются с двумя важными аспектами математического образования.

Первый аспект состоит в геометрическом истолковании неравенств, которое делает все рассуждения предельно ясными. Однако нельзя забывать, что заключение делается не на основе чертежа, а путём анализа алгебраического выражения.

Второй аспект сводится к различным приёмам доказательства. Самый главный из них – рассмотрение разности между двумя частями неравенства. Но существуют и такие методы, как сведение доказываемого неравенства к равносильному, которое осуществляется заменой данных выражений обратным им, использование метода от противного и метода математической индукции.

Таким образом, неравенства являются наиболее компактным, легко обозреваемым и доступным для учащихся материалом, на котором отрабатываются сложнейшие математические методы. Отметим ряд особенностей изучения темы:

Как правило, навыки решения неравенств формируются на более низком уровне, чем навыки решения уравнений соответствующих классов, так как теория неравенств сложнее теорий уравнений (при выполнении одного и того же числа упражнений техника решения неравенств какого – либо класса будет ниже, чем уравнений соответствующего класса; следовательно, если имеется необходимость формирования прочных навыков решения неравенств, то для этого требуется большее число заданий).

Большинство приёмов решения неравенств состоит в переходе от данного неравенства к уравнению и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства (темы, относящиеся к неравенствам, расположены после тем, относящихся к соответствующим классам уравнений).

В изучении неравенств большую роль играют наглядно – графические средства (изучение неравенств зависит от качества изучения функциональной линии школьного курса – построение графиков и графическое исследование функций).

Рассмотрим введение алгоритма решения неравенств первой и второй степени с одним неизвестным.

Формирование алгоритма « Решение неравенств первой степени с одной неизвестной»

Цель:

выработать умение решать неравенства первой степени с одним неизвестным и системы линейных неравенств.

Рассмотрению линейных неравенств и их систем предшествует детальное изучение числовых неравенств и их свойств.

В отличие от свойств числовых равенств, с которыми учащиеся знакомы ещё с начальной школы, свойства числовых неравенств они изучают практически впервые. Свойства формулируются в общем виде и достаточно строго доказываются. Это часто вызывает дополнительные трудности у учащихся, так как они здесь впервые в алгебре встречаются с теоремами.

Алгоритм решения неравенства с неизвестным сложнее, чем алгоритм решения уравнений, так как на последнем этапе решения приходится учитывать знак коэффициента при неизвестном. Кроме того, в отличие от уравнения неравенство имеет не отдельные решения, а, как правило, множество решений.

Решение систем неравенств с одним неизвестным тесно связано с числовыми промежутками, с которыми учащиеся знакомятся впервые. Изображению числовых промежутков на координатной прямой нужно уделить особое внимание. В частности, можно предложить следующий алгоритм, который позволит учащимся правильно отмечать промежутки, соответствующие неравенствам (простым или двойным) на координатной прямой.

Например, дано неравенство а ≤ x < b

Нужно отметить соответствующий промежуток на координатной прямой. Для этого воспользуемся алгоритмом.

Если знак первого неравенства нестрогий, то точка будет закрашенной → ставим точку на координатную прямую

( ≤ ( ≥ )→ • → отмечаем точку).

Если знак первого неравенства строгий, то точка будет выколотая→ отмечаем точку на координатной прямой

Страницы: 1 2 3 4 5 6 7

Материалы по педагогике:

Обучение методам построения алгоритмов
Главной целью раздела алгоритмизации является овладение учащимися структурной методикой построения алгоритмов. Традиционно применяемым дидактическим средством в этом разделе являются учебные исполнители алгоритмов. Главным достоинством учебных исполнителей является: ясность для ученика решаемых зад ...

Психолого-педагогические особенности детей младшего школьного возраста
Младший школьный возраст определяется возрастом детей с 6 (7) до 9 (10) лет. Ребёнок 7-8 лет находится как бы на рубеже двух возрастных категорий: он ещё в плену детских игр и ощущений, связанных с домашней обстановкой, и вместе с тем входит в школьную жизнь, накладывающую на него новые обязанности ...

Организационно – педагогические условия, обеспечивающие формирование мотивации в развитии креативности у школьников
Организационно-педагогические условия – это совокупность взаимосвязанных мер обеспечивающих целенаправленное управление образовательным процессом. В соответствии с принципом динамизма система организационных условий направлена на обеспечение развития образовательного процесса и включает в себя: пла ...

Навигация