5.Решите неравенство методом интервалов.
1)
2)
3)
6.Решите неравенство.
1)
2)
3)
Опытное преподавание
Факультативное занятие в девятом классе (решение неравенств с параметром первой степени с одной неизвестной).
Цель:
применить алгоритмический метод при формировании умений и навыков в решении линейных неравенствах с параметрами.
Задачи:
расширить кругозор учащихся;
воспитание внимания, аккуратности, самостоятельности;
осуществление взаимосвязи теории и практики;
развитие памяти, логического мышления.
Решение задач с параметрами всегда вызывает большие трудности у учащихся. Причём часто учащиеся испытывают психологические трудности, «боятся» таких задач, так как не видят связи в их решении с решениями линейных неравенств с одной переменной.
Изучение линейных неравенств с параметром первой степени с одной неизвестной не возможно без умения решать линейные неравенства с одной переменной. Так как факультатив проводился в 9 классе, а линейные неравенства изучались в восьмом классе, то возникла необходимость актуализировать знания по решению линейных неравенств, вспомнить этапы их решения. Ученикам можно предложить следующее задание.
Решите неравенство 2(х+5)-3≥4+3х
Все решают у себя в тетрадях, а один ученик решает у доски. Запись ведёт в два столбика. Решение в одном столбика, а в другом записывают пояснения к своим действиям.
2х+7≥4+3х Раскрыли скобки в обеих частях неравенства
2х-3х≥4-2 Перенесли слагаемые, содержащие переменную в одну
часть, а не содержащую в другую.
-х≥2 Привели подобные члены в каждой части.
х≤-2 Разделили обе части неравенства на коэффициент при
переменной (учитывая его знак !).
Отметили соответствующие промежутки на
координатной прямой.
х
(-∞;-2] Записали числовой промежуток
После того как повторили этапы решения линейных неравенств с одной переменной, учитель предлагает на доске подробный разбор решения неравенства с параметром. Затем ученики вместе с учителем формулируют алгоритм решения линейных неравенств с параметром.
Пример 1. Рассмотрим решение неравенства (а-4)∙х<12
Чтобы найти х, обе части неравенства хочется разделить на (а-4). Однако теперь важно положительно, отрицательно или равно нулю выражение (а-4).
Определим знак выражения
|
|
|
Рассмотрим три случая:
а-4=0
а-4>0
а-4<0
1)если а-4=0
а=4, то неравенство примет вид 0х<12, которое справедливо для всех х
R
2) a-4>0
a>4, то разделим обе части неравенства на положительное выражение (а-4), не меняя знак неравенства, получим х >
(используем свойство числового неравенства).
Материалы по педагогике:
Принципы и методы измерения процесса и результатов педагогического труда
Принцип нормирования труда. Понятие «нормирование» означает руководящее начало, правило, образец. В обучении и воспитании без них не обойтись. Решению задач нормирования педагогического труда способствует принцип нормирования и его методы. Как исходное положение научной организации педагогического ...
Методика разработки деловой игры
Для разработки деловой игры принципиальными моментами являются также определение темы и целей. Так, например, в теме могут быть отражены: характер деятельности; масштаб управления; состав инстанций и условия обстановки. При определении целей разработчику важно ответить на несколько принципиальных в ...
Характеристика и особенности речи детей с
фонетико-фонематическим недоразвитием речи
Необходимость проведения коррекционно-речевой работы в общеразвивающих группах связана с тем, что до 50% воспитанников дошкольных учреждений имеют отклонения в речевом развитии и оказываются неподготовленными к школьному обучению. Отклонения в речевом развитии детей могут иметь как ярко выраженные ...